Resistive CAM Acceleration for Tunable Approximate Computing
نویسنده
چکیده
The Internet of Things significantly increases the amount of data generated, straining the processing capability of current computing systems. Approximate computing is a promising solution to accelerate computation by trading off energy and accuracy. In this paper, we propose a resistive content addressable memory (CAM) accelerator, called RCA, which exploits data locality to have an approximate memory-based computation. RCA stores high frequency patterns and performs computation inside CAM without using processing cores. During execution time, RCA searches an input operand among all prestored values on a CAM and returns the row with the nearest distance. To manage accuracy, we use a distance metric which considers the impact of each bit indices on computation accuracy. We evaluate an application of proposed RCA on CPU approximation, where RCA can be used as a stand-alone or as a hybrid computing unit besides CPU cores for tunable CPU approximation. We evaluate the architecture of the proposed RCA using HSPICE and multi2sim by testing our results on x86 CPU processor. Our evaluation shows that RCA can accelerate CPU computation by 12.6× and improve the energy efficiency by 6.6× as compared to a traditional CPU architecture, while providing acceptable quality of service.
منابع مشابه
Resistive Memory for Approximate Program Acceleration
The Internet of Things significantly increases the amount of data generated that strains the processing capability of current computing systems. Approximate computing can accelerate the computation and dramatically reduce the energy consumption with controllable accuracy loss. In this paper, we propose a Resistive Associative Unit, called RAU, which approximates computation alongside processing...
متن کاملImprecise Minority-Based Full Adder for Approximate Computing Using CNFETs
Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. According...
متن کاملResistive Memory Based Acceleration of Data Intensive Computing
Resistive memory technologies hold the promise of replacing mainstream on-chip memory while providing enhanced throughput and capacity in modern compute systems. Demonstrating material, process, and circuit compatibility with existing CMOS infrastructures, resistive memories deliver non-volatility, no static power consumption, and improved density. Application of these technologies, however, re...
متن کاملApproximate resistivity and susceptibility mapping from airborne electromagnetic and magnetic data, a case study for a geologically plausible porphyry copper unit in Iran
This paper describes the application of approximate methods to invert airborne magnetic data as well as helicopter-borne frequency domain electromagnetic data in order to retrieve a joint model of magnetic susceptibility and electrical resistivity. The study area located in Semnan province of Iran consists of an arc-shaped porphyry andesite covered by sedimentary units which may have potential ...
متن کاملThe Acceleration Mechanism of Resistive Mhd Jets Launched from Accretion Disks
We analyzed the results of non-linear resistive magnetohydrodynamical (MHD) simulations of jet formation to study the acceleration mechanism of axisymmetric, resistive MHD jets. The initial state is a constant angular momentum, polytropic torus threaded by weak uniform vertical magnetic fields. The time evolution of the torus is simulated by applying the CIP-MOCCT scheme extended for resistive ...
متن کامل